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We calculate analytically the geometric phases that the eigenvectors of a parametric dissipative two-state
system described by a complex symmetric Hamiltonian pick up when an exceptional point(EP) is encircled.
An EP is a parameter setting where the two eigenvalues and the corresponding eigenvectors of the Hamiltonian
coalesce. We show that it can be encircled on a path along which the eigenvectors remain approximately real
and discuss a microwave cavity experiment, where such an encircling of an EP was realized. Since the wave
functions remain approximately real, they could be reconstructed from the nodal lines of the recorded spatial
intensity distributions of the electric fields inside the resonator. We measured the geometric phases that occur
when an EP is encircled four times and thus confirmed that for our system an EP is a branch point of fourth
order.
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I. INTRODUCTION

Since Berry’s pioneering work[1] geometric phases, i.e.,
contributions to a quantum system’s phase which depend
only on the geometry of the path traversed by the system in
its parameter space, have been the focus of intense theoreti-
cal and experimental research. The majority of the theoreti-
cal works discuss various generalizations of Berry’s original
paper, see, e.g., Refs.[2–5] and for a very early work Ref.
[6], and investigate the appearance of geometric phases in
systems with complex eigenfunctions, such as, e.g., open or
dissipative systems[7,8]. Most experimental works observe
geometric phases by tracing the pattern of nodal lines of a
wave function during adiabatic and cyclic processes[2,9], a
technique suggested originally by Berry and Wilkinson[10].

The dissipative nature of a system is commonly sup-
pressed or neglected in experiments(see, e.g., Ref.[11]).
This was not the case in the recently reported observation of
a so-called exceptional point(EP) in a microwave cavity
experiment[12]. Such an EP, i.e., the coalescence of two
levels of a quantum system, occurs only in dissipative sys-
tems, where it is associated with crossings and avoided
crossings of the eigenvalues[13–15]. One of the key features
of an EP is the appearance of a geometric phase[12,14–16]
when it is encircled in parameter space. If the EP is isolated,
in its vicinity the dynamics is predominantly determined by
the two states corresponding to the resonances, which coa-
lesce at the EP. There, our system may be modeled by a
two-dimensional non-Hermitian, symmetric matrix. Such
systems have been analyzed in Refs.[3,15], where one can
find a complete and very detailed treatise on the essential
features of the eigenvalues and eigenvectors of parameter-
dependent two-dimensional matrices associated with the sin-
gularities.

For two-state systems described by a complex symmetric
Hamiltonian, the geometric phase associated with an EP
[12,14] differs from that associated with a diabolic point
(DP) [10], a simple degeneracy between two levels. The only
way to determine a geometric phase with our experimental

setup[12] is by recording the change of the pattern of nodal
lines when encircling an EP in parameter space. In our mi-
crowave cavity experiments we can only measure the inten-
sity distribution of the electric field, that is, the absolute
value of the complex eigenfunctions. However, a premise for
the mere existence of a pattern of nodal lines is that the
eigenfunctions remain real throughout the cyclic process.
Accordingly, the question arises, whether Berry’s reconstruc-
tion technique can be applied to the complex eigenfunctions
of the dissipative microwave resonator discussed in Refs.
[12,17].

In the present work we first focus on a parametric two-
state model adequate for the simulation of our experiment
with the dissipative microwave cavity. In doing so, we re-
strict ourselves to the analysis of those properties of the ei-
genvalues and eigenvectors, which are observable using our
experimental setup. For more detailed information one might
consult Ref.[3]. Accordingly, we calculate the geometric
phase that occurs when an EP is encircled. Moreover, we
show that for this model a path around the EP exists along
which the eigenvectors are approximately real, that is, have
an imaginary part negligible compared to its real part. In-
deed, as is explained in more detail below, from the mere
fact that we observe nodal lines rather than nodal points in
our experiment we may already conclude that along the path
chosen in our experiment the eigenfunctions have exactly
this property. This then allows us to employ Berry’s recon-
struction technique in a microwave cavity experiment, where
the development of the nodal line patterns with the param-
eters is studied.

The paper is organized as follows. Using a two-state
model adequate for the simulation of our experiment we ana-
lytically calculate in Sec. II the geometric phases that occur
when an EP is encircled. By this calculation a path around
the EP is defined, along which the eigenvectors of the system
remain approximately real. In Sec. IV the actual microwave
cavity experiment is discussed. Using the same experimental
techniques and a setup similar to the one discussed in Ref.
[12], we here present data from the encircling of a different
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EP. From the transformation properties of the eigenfunctions
and from the existence of a nodal line pattern for every set-
ting of the cavity’s parameters we conclude that the eigen-
functions remain approximately real in the experiment while
the EP is encircled. A conclusion is given in Sec. V.

II. ANALYTIC TREATMENT OF ENCIRCLING AN EP

In this section, we analyze the behavior of the eigenvec-
tors of a two-state quantum system when encircling an EP.
As outlined in Ref.[12], the two-state Hamiltonian appropri-
ate for the simulation of our system in the vicinity of an
isolated EP is written in terms of a two-dimensional complex
symmetric matrix. Accordingly, in the sequel we restrict our-
selves to such two-state systems. In particular, we show that
a closed path exists along which the eigenvectors are ap-
proximately real and that in accordance with Refs.[3,14] one
needs four turns around the EP in order to restore the original
situation. We use the same notation as in Refs.[17,18] and
write the Hamiltonian of the two-state system in the form

H = SE1 − ig1 H12

H12 E2 − ig2
D . s1d

Here, the parametersE1,2 and g1,2 are real andH12 may be
complex. Expression(1) is a complex symmetric Hamil-
tonian. By defining

E ;
E1 + E2 − isg1 + g2d

2
s2d

and

e; sE1 − E2d/2,

g ; sg1 − g2d/2, s3d

the eigenvaluesE1,2 of H can be written as

E1,2= E ± Îse− igd2 + H12
2 . s4d

Two-state systems described by such a Hamiltonian have
been studied both analytically and numerically in Ref.[15].
Moreover, subtractingE from the diagonal elements ofH
given in Ref.[3] and performing a transformation of the type
defined in Eq.(3.6) of Ref. [3], the Hamiltonian(1) can be
brought to the form given in Eq.(6.2) of Ref. [3] with G
=0, whose eigenvalues and eigenvectors provide the refrac-
tive indices and the associated polarization vectors of di-
chroic, nonchiral crystals. Reference[3] provides a very de-
tailed description of such crystals at and around three types
of singularities(called singular axes,C points of circular
polarization, which in the absence of chirality coincide with
the singular axes, andL lines of linear polarization) that may
occur dependent on the choice of the three parameterse, g,
andH12. In the following we will rederive those properties of
the eigenvalues and eigenvectors of the Hamiltonian(1),
which are observable using our experimental setup.

The complex eigenvalues coincide if the square root van-
ishes. Hence, at the two EPs ofH, one has the relation

H12 = ± ise− igd s5d

between the parameters of the Hamiltonian. Furthermore, the
parameterH12 is nonzero at an EP. Else, ifH12 vanishes, the
space of eigenvectors is two dimensional[see Eq.(1)], and a
degeneracy rather than an EP occurs.

Since we are interested in the behavior of the eigenvectors
of H in the vicinity of an EP, we furthermore define the
complex parameter

B ;
e− ig

H12
, s6d

which becomes

BEP= ± i s7d

at an EP, i.e., when Eq.(5) is fulfilled. The eigenvectorsur1l
and ur2l of H can then be written as functions ofB. Normal-
izing the left-hand eigenvectorsklku and the right-hand eigen-
vectorsurkl in the biorthogonal sense, they can be defined as

kl1u = scosu,sin ud, ur1l = Scosu

sin u
D ,

kl2u = s− sin u,cosud, ur2l = S− sin u

cosu
D , s8d

whereu is defined by

tan u ; − B + ÎB2 + 1 = −B + ÎsB + idÎsB − id. s9d

This choice of normalization of course defines the left and
right eigenvectors only up to an additional phase, which can-
cels out when evaluating the absolute value of the eigenvec-
tors. Hence, this additional phase may not be observed with
our experimental setup(see Sec. III).

When varying B continuously along a closed curve
around one of the EPs, i.e., aroundBEP= + i or BEP=−i, the
phase ofB−BEP will change by 2p. Accordingly,oneof the
square-root functions in the second line of Eq.(9), namely,
that corresponding toÎB−BEP, changes its sign, whereas
ÎB+BEP will return to its original value as long as exactly
one EP is encircled. Hence, encircling an EP implies a
change from tanu to tanu1, where

tan u1 ; − B − ÎB2 + 1 = − cotu, s10d

that is,

u1 = u ±
p

2
. s11d

To compare the eigenvectors ofH before and after encircling
an EP in theB plane, we use the abbreviation

u1,2l ; ur1,2lB0
, s12d

whereB0 denotes some value ofB. Starting from this initial
valueB0 we track the development of the eigenvectors ofH
when an EP is encircled. Comparing the eigenvectors before
and after encircling an EP, i.e., insertingu and u1=u+p /2
into Eq. (8), then yields the transformation scheme
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Hu1l
u2l J 	 H u2l

− u1l J 	 H− u1l
− u2l J 	 H− u2l

u1l J 	 Hu1l
u2l J , s13d

while insertingu andu1=u−p /2 leads to

Hu1l
u2l J � H− u2l

u1l J � H− u1l
− u2l J � H u2l

− u1l J � Hu1l
u2l J . s14d

Both schemes have been observed experimentally[12,17] in
a particularly shaped microwave billiard(see Sec. IV) by
changing the orientation of the closed loop around the EP, as
indicated by the symbols	 and�. Changing the orientation
of the loop is equivalent to following a given scheme back-
wards. In both cases,four turns around the EP are needed in
order to restore the original situation(see also Refs.
[3,12,14]). At this point we note that ifB changes continu-
ously along a closed curve, which encirclesboth EPs, then
the sign ofboth square-root functions in the second line of
Eq. (9) will change, that is, each of the eigenvectorsu1l and
u2l transforms into itself. If, however, both EPs are encircled
with opposite orientation by tracing out an “8,” then both
eigenvectors will acquire an extra phasep, that is, a phase
which coincides with Berry’s phase for the encircling of a
diabolical point(see Sec. III).

The resulting transformation schemes[Eqs.(13) and(14)]
are not surprising since the eigenvectors(8) have a branch
point of a fourth root at the EP. This can be easily seen by
noting that(i) the tangent in Eq.(9) depends onÎB±BEP and
(ii ) an additional square root is needed for the computation
of the sine and cosine functions in Eq.(8), from the tangent,
viz.,

cosu =
1

Î1 + tan2 u
,

sin u =
1

Î1 + cot2 u
. s15d

If B is real, the components ofu1l and u2l are real. Hence, if
B is sufficiently far from the EPs, i.e.,

uBu @ 1, s16d

the eigenvectors are approximately real. Keeping only terms
up to the first order inB−1 we obtain

ur1l < S 1

s2Bd−1D ,

ur2l < Ss2Bd−1

− 1
D . s17d

Therefore the eigenfunctions are approximately real along
the path sketched in Fig. 1, which either follows the real axis
of the complexB plane or fulfills Eq.(16). We note here that
along the lower part of the path sketched in Fig. 1, i.e., far
away fromBEP=−i, the components of the eigenvectors de-
pend only linearly onB−1. We therefore expect that the ex-
perimentally measured eigenvectors vary only slightly along
this part of the path. If the nodal line patterns are tracked

along this path in an experiment, they can be used to recon-
struct the eigenstates according to Berry and Wilkinson[10].

III. PHASE OF THE EIGENVECTORS

In the following section we will discuss whyonly the
transformation schemes(13) and(14) are observed in experi-
ments (see Refs.[12] and Sec. IV). One can redefine the
eigenvectors such that

klku → kl̃ ku = e−ifklku, urkl → ur̃kl = eifurkl. s18d

This conserves the biorthogonal normalization. If the phase
f is, e.g., constructed[25] so that after two loops around an
EP it equalsp then one obtainsur̃kl→ ur̃kl after two loops.
This seems to disagree with the schemes(13) and(14) claim-
ing thatur̃kl→−ur̃kl after two loops. In the present section we
show that the experimental result(13) for the phase change
of the eigenvectors(8) remains unchanged under the replace-
ment(18). In the first section the essence of the argument is
presented in a rather general and abstract way. In the second
section the loops around an EP are described in a more
physical way. In the third section, we consider eigenstates
with an additional phase, as defined in Eq.(18), and show
that the results of the second section remain unchanged. In
the last section we show that the present arguments yield the
well-known geometrical phase occurring when a DP is en-
circled.

A. Smoothest interpolation between the experimental pictures

In the experiment described in Sec. IV and in Refs.
[12,17] the development of the eigenvectors(8) is tracked.
Their coefficients are analytical functions ofB everywhere
except at the EPs. Analytical functions are arbitrarily often
differentiable. In this sense they are the smoothest possible
functions.

Except for a parameter-independent phase, the vectors(8)
are the only analytical representation of the eigenvectors,
because a system of biorthogonal eigenvectors is well de-
fined up to an arbitrary phasef=fsBd as introduced in Eq.
(18) with a complexB. The phase is real in all the domain
where one is allowed to choose the pathC. Except for the
constant there is no analytical function which is real on some

FIG. 1. A path in the complexB plane[cf. Eq. (6) in the main
text] surrounding an EP situated atBEP=−i. Along this path the
eigenfunctions ofH remain approximately real.

ENCIRCLING AN EXCEPTIONAL POINT PHYSICAL REVIEW E69, 056216(2004)

056216-3



area in the complex plane. Hence, multiplying Eq.(8) with a
phase factor depending onB yields nonanalytical eigenvec-
tors.

Instead of claiming that the experiment follows Eq.(8),
one can therefore state that Eq.(8) is the smoothest interpo-
lation between the experimental pictures of the eigenfunc-
tions. In this sense it is the simplest mathematical interpre-
tation of the sequence of wave functions presented in Fig. 3.
According to the argument of Ockham’s razor[19] one can-
not hope for anything else.

In the following section, a physical process is discussed
that allows us to explicitly follow a given eigenvector on a
path encircling an EP. It yields in Sec. III C the result an-
nounced above.

B. Parameter-dependent state

The physical process is the one introduced by Berry in
Ref. [1]—modified to the treatment of complex symmetric
(instead of Hermitian) H and to loops around an EP(instead
of a DP).

Let H=HsRW d depend on a setRW of parameters. The eigen-

vectorsklksRW du, urksRW dl, and eigenvaluesEsRW d depend onRW .

In a first step, we considerRW =RW std as a function of time.
The stateucstdl of the system is the solution of the time-
dependent Schrödinger equation

H„RW st…ducstdl = i
]

] t
ucstdl. s19d

At t=0 the system shall be in the eigenstateurnl, i.e.,

ucs0dl = urn„RW s0d…l. s20d

Expandingucstdl into the instantaneous eigenstatesurn(RW std)l
at timet and assuming that the parameterRW std is changed so
slowly that the adiabatic approximation is applicable[24],
we obtain

ucstdl = expS− iE
0

t

dt8En„RW st8d…Dexpfif„RW std…gurn„RW std…l.

s21d

Hence, the adiabatic approximation implies that at each in-
stant t the stateucstdl is proportional to the instantaneous

eigenstateurn(RW std)l, if it is proportional tourn(RW s0d)l at time
t=0. The dynamical phase

− iE
0

t

dt8En„RW st8d…

is well known. Of special interest is the additional phasef
which is due to the motion in parameter space. With the
ansatz(21), Schrödinger equation(19) yields the equation

ḟurnl = i
]

] t
urnl s22d

for the phasef. Using biorthogonality this gives

ḟ = iKlnU ]

] t
rnL = iklnu¹W RrnlRW ˙ . s23d

The solution is

f = iE
0

t

dt8klnu¹W RrnlRẆ = iE
C

dRW klnu¹W Rrnl. s24d

The last integral is a path integral inRW space. The parameters
move along the pathC between time zero and timet. This
means that the time has only served to parametrize the path.
The last integral is independent of time and should therefore
be valid not only for an adiabatic process but also in the
present experimental context, where a continuous variation
of the parameters is considered. Let

RW = SReB

ImB
D s25d

be the real and imaginary parts ofB, and letklnu,urnl be de-
fined as in Eq.(8). Then Eq.(24) is a path integral in the
complex plane ofB, viz.,

f = iE
C

dBKlnU d

dB
rnL . s26d

The integrand is analytic everywhere except at the EPs. The
function klnusd/dBdrnl is multivalued—it is defined on a Rie-
mannian surface rather than the complex plane. But on that
surface, it is analytic everywhere. Especially it is continuous
on every pathC that avoids the EPs. Along such a path one
has

KlnU d

dB
rnL =

1

2
SK d

dB
lnUrnL +KlnU d

dB
rnLD

=
1

2

d

dB
klnurnl = 0. s27d

The first line of this equation holds becauseklnu is just the
transpose ofurnl. The result is due to the biorthogonal nor-
malization.

Hence, the choice(8) for the eigenfunctions leads to

fsCd = 0 s28d

if the pathC does not cross an EP. In other words, our choice
of the normalization implies that the total phase acquired by
a stateucstdl when encircling an EP in parameter space is
obtained from the change of the eigenstates, that is, from the
transformation schemes(13) and (14). As will be shown in
the following section, this result is independent of the phase
convention chosen for the eigenstates.

C. Redefining the phase of the eigenstates

Let us use in Sec. III B the eigenstatesur̃kl,kl̃ ku of Eq. (18)

instead ofurkl,klku. The phasef=fsRW d shall be a function of
the parameters. Then, in analogy to Eq.(21) we may write
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ucstdl = expS− iE
0

t

dt8En„RW st8d…Dexpfib„RW std…gur̃n„RW std…l

= expS− iE
0

t

dt8En„RW st8d…Dexpfib„RW std… + if„RW std…g

3urn„RW std…l, s29d

where in the second line we used the definition ofur̃nl [see
Eq. (18)]. Hence, the total change of the phase ofucstdl is
given asfbsCd+fsCdg plus the change ofurnl. But, proceed-
ing as in Sec. III A one shows thatfbsCd+fsCdg=0, as long
as the path does not cross an EP. As a result, our choice of
the normalization of the eigenstates has the specific property
that all phase changes acquired by a stateucstdl when encir-
cling an EP are solely obtained from the transformation
schemes(13) and(14) independent of the phase conventions
chosen for the eigenstates—in agreement with the argument
given in Sec. III A. For comparison we briefly discuss—in
the following section—the well-known phase that occurs
when a diabolic point is encircled.

D. Encircling a diabolic point

A diabolic point is a degeneracy of the eigenvalues such
that there are two linearly independent eigenvectors. It is
most easily obtained as a degeneracy in a system described
by a real, symmetricH. Let us set in Eq.(1)

g1 = 0, g2 = 0, s30d

and

H12 = v = real. s31d

Then the diabolic point occurs whene=0 andH12=0. Encir-
cling corresponds to moving the vector

S e

H12
D

around the origin, e.g., with

e= % cosj, H12 = % sin j, 0 ø j , 2p. s32d

This yields the eigenvectors

ur1l = Scossj/2d
sinsj/2d

D s33d

and

ur2l = S sinsj/2d
− cossj/2d

D . s34d

One sees that encircling a DP changes the sign of the
eigenvectors—this is Berry’s phase[1].

Strictly speaking, the path(32) cannot be represented as a
closed curve in the complex plane ofB. According to Eq.
(32), B is real for all j except j=0,p, where it goes to
infinity. In order to circumvent this difficulty one can add a
small imaginary part toH12 and replace Eq.(31) by

H12 = v + ie. s35d

By virtue of Eq.(32), the parameter

B =
e

v + ie
s36d

then moves on a path that has the shape of a figure-eight and
encircles the EPs ati and −i in opposite directions. We have
convinced ourselves that such a closed path changes the
phase of the eigenvectors byp—in agreement with Berry’s
phase.

The parametrization in terms ofB is similar to the one
discussed in Ref.[15]. However, the authors of Ref.[15] did
not exactly specify the path chosen for encircling a DP. Note
that a closed path which encircles both EPs in the same sense
does not change the phase of the eigenvectors.

IV. EXPERIMENT

The geometric phases which occur when an EP is en-
circled have been observed for the first time in the micro-
wave cavity experiment described in Ref.[12]. Flat micro-
wave resonators as the one used in Ref.[12] are commonly
known as microwave billiards and form one cornerstone for
the experimental investigation of quantum chaotic phenom-
ena(for an overview see, e.g., Refs.[20,21]). They compose
an analog computer that solves the Schrödinger equation for
quantum billiards. The circular resonator employed in the
experiment[12] was manufactured of copper and divided by
a conducting wall into two approximate half-circles. Figure 2
shows a photograph of the cavity without its lid. An opening
of lengths in the wall couples the two semicircular parts of

FIG. 2. A photograph of the opened microwave billiard em-
ployed for the observation of EPs. A circular copper cavity is di-
vided into two semicircular parts. The two parts are variably
coupled by a slit of widths. One of the semicircular cavities can be
perturbed by adjusting the positiond of a Teflon stub inside the
resonator.
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the cavity. A second adjustable parameter, calledd, is given
by the position of a semicircular Teflon stub in one part of
the cavity.

In the vicinity of an EP[12], we model the microwave
billiard through a two-state system as described byH of Eq.
(1). The connection between the parameters ofH and the
observables of the microwave cavity experiment can be il-
lustrated directly for the uncoupled case which impliess
=0 mm, that is,H12=0, in Eq.(1). The resonance frequency
f1 of a mode in one semicircular cavity corresponds toE1 in
Eq. (1) while the total width of it,G1, corresponds tog1. The
resonance frequency and total width of a mode in the adja-
cent semicircular cavity gives thenE2 andg2. The situation
is slightly more involved fors.0 mm, i.e.,H12Þ0. How-
ever, the diagonal elements ofH are the same as in the un-
coupled case. Moreover, the coupling mechanism via the slit
implies that the off-diagonal elements ofH coincide, that is,
H is complex symmetric. The resonance frequencies and the
widths measured in the experiment correspond to the real
and the imaginary part of the eigenvalues ofH.

The nodal line patterns of the electric-field distributions
could be mapped by using a perturbation body method
[12,22,23]. Applying Berry’s procedure[1] to these patterns
we were able to reconstruct the eigenfunctions of the cavity.
Extending Ref.[12] we show here a pair of modes, which for
small couplings are localized in the adjacent semicircular
halves of the cavity(see Fig. 3). Figure 3 exhibits two re-
constructed eigenfunctions of the resonator for various pa-
rameter settingsss,dd. The two shadings in Fig. 3 can be
associated with the two different orientations of the electric
field inside the microwave billiard[21]. The wave functions
of these modes can be mapped out separately even at a fre-
quency crossing if the resonator is excited via different an-
tennas[17]. Following the theoretical analysis, cf. Eq.(12),
we chose the wave functions fors=10 mm andd=42 mm as
basis states, i.e.,

u1,2l ; ur1,2lss=10 mm,d=42 mmd. s37d

The basis states are labeled asu1l in Fig. 3(a) and u2l in Fig.
3(b), respectively. They are chosen far away from the EP,
beforehand identified by studying the behavior of the eigen-
values[12], so that Eq.(16) is fulfilled. This implies that the
basis states are approximately real[cf. Eq. (17)]. At all other
parameter settings, the eigenstatesur1l and ur2l are linear
combinations ofu1l and u2l, cf. Ref. [17]. Let a, b be the
expansion coefficients ofur1l so that

ur1l = au1l + bu2l. s38d

The eigenstates are orthonormal in the biorthogonal sense,
which requires

ur2l = bu1l − au2l. s39d

and

a2 + b2 = 1. s40d

The eigenfunctions remain approximately real forall steps
displayed in Fig. 3, since a superposition ofu1l , u2l with
complex expansion coefficients would have removed the

nodal lines while a superposition of the basis states with real
expansion coefficients simply shifts the nodal lines. The rea-
son for this is that the absolute value of the wave function of
the complex superposition is zero only where the coefficients
of both u1l and u2l vanish.

By varying ss,dd in small steps, one EP has been en-
circled in thess,dd plane. Both eigenfunctions were tracked
continuously during the sequence of 11 steps that form the
closed loop around the EP. The reconstructed wave functions
clearly show that the basis stateu1l transforms tou2l [see
Fig. 3(a)], and thatu2l transforms to −u1l, which implies a
geometric phase ofp. The data presented in Fig. 3 therefore
confirm in Berry’s sense[1,11] the appearance of a geomet-
ric phase which is picked up byoneeigenvector when an EP
is encircled:

Hu1l
u2l J 	 H u2l

− u1l J . s41d

A recently suggested additional geometric phase[25], which
also leads to mathematical inconsistencies[26], does not ap-
pear.

The transformation scheme for four consecutive turns
around a single EP has been measured by repeatedly tracking
the nodal line patterns along the path shown in Fig. 3. The
resulting geometric phases for the basis statesu1l andu2l can

FIG. 3. Development of the reconstructed electrical field distri-
butions of two modes of the resonator shown in Fig. 2 while an EP
is encircled. The initial states, i.e., the “start” configurations, are
labeled asu1l and u2l in agreement with the definition(37). Their
field distributions can be reconstructed from the recorded nodal line
patterns for all settingsss,dd.
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be derived from the reconstructed wave functions shown in
Fig. 4. Our experimental results are in accordance with the
analytical result, Eq.(13); see Fig. 4. The transformation
scheme(13) implies that the eigenfunctions of the resonator
have a branch point of fourth root at the EP.

V. CONCLUSION

We have shown analytically that the eigenfunctions of the
two-state system described by the complex symmetric
Hamiltonian modeling our microwave cavity experiment
transform according to Eq.(13) and (14) when the param-
eters of the Hamiltonian are taken around one EP, i.e., a

fourth-order branch point. The appearing geometric phases
are a consequence of the normalization of the eigenfunctions
(8). The eigenfunctions are approximately real on a path en-
circling the EP, a property which is essential for their experi-
mental reconstruction according to Berry[1] from distribu-
tions of nodal lines mapped in microwave cavity
experiments.

We verified these results by performing an experiment
with a normal conducting microwave billiard consisting of
two variably coupled semicircular resonators. The two
modes we report on here are for small couplings localized in
the adjacent semicircular halves of the resonator. This al-
lowed us to completely map their nodal line patterns when
the EP is encircled. The reconstructed wave functions con-
firm the transformation schemes derived analytically. The ex-
perimental results presented here show that the geometric
phases occurring when an EP is encircled agree with those
observed in earlier experiments[12] and with analytical and
numerical calculations[3,14,15]. There is no experimental
evidence for any additional geometric phase factors[25].
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